### Modelling of Multi-Parameter-Level Simulation Data to Create an Enhanced Cordier Diagram for Radial Turbocompressors

### iSimT-24 Symposium on Innovative Simulations in Turbomachinery Yannick Lattner, M.Eng

Team Lead CFD at ITB Ingenieurgesellschaft für technische Berechnungen

- 1. Introduction
- 2. Computational Model
- 3. Nested Design of Experiments
- 4. Surrogate Modeling
- 5. Applications

Parameterization, simulation and data-modeling as an integral part of the PhD-thesis:

A Multi-Level Design Space-Based Enhanced Cordier Diagram for Radial Turbocompressors

(Currently being reviewed at Bauhaus-Universität Weimar)



### **Concept of the enhanced Cordier diagram**

- Shall provide combinations of specific speed  $\sigma$  and specific diameter  $\delta$  using the Cordier line
- Iterations of rotational velocity or diameter to obtain feasible designs, change the location in the Cordier diagram
- Cordier line is not a functional, precise approach for modern radial turbocompressor designs



### **Concept of the enhanced Cordier diagram**

- Shall provide combinations of specific speed  $\sigma$  and specific diameter  $\delta$  using the Cordier line
- Iterations of rotational velocity or diameter to obtain feasible designs, change the location in the Cordier diagram
- Cordier line is not a functional, precise approach for modern radial turbocompressor designs



### **Concept of the enhanced Cordier diagram**

- Shall provide combinations of specific speed  $\sigma$  and specific diameter  $\delta$  using the Cordier line
- Iterations of rotational velocity or diameter to obtain feasible designs, change the location in the Cordier diagram
- Cordier line is not a functional, precise approach for modern radial turbocompressor designs



### **Concept of the enhanced Cordier diagram**

The Cordier diagram

- Shall provide combinations of specific speed  $\sigma$  and specific diameter  $\delta$  using the Cordier line
- Iterations of rotational velocity or diameter to obtain feasible designs, change the location in the Cordier diagram
- Cordier line is not a functional, precise approach for modern radial turbocompressor designs



Impeller exit relative blade angle distribution

### **Concept of the enhanced Cordier diagram**

- Fails to provide precise combinations of rotational velocity and impeller diameter for modern machines
- Does not provide any indication regarding a future compressor's efficiency
- Neglects significant parameter influences



### **Concept of the enhanced Cordier diagram**

A digital, enhanced Cordier Diagram

- Re-enable the indented use
- Provide addition data to weight possible designs
- Operate as a digital tool with application-based outputs
- Based on simulation data of modern radial turbocompressors
- Inputs must be available at the start of the design process

### **Requirements to the computational model**

- Complex parameter space
  - Differentiation of influences introduced by geometry design space and machine design space
  - Machine design process
  - Parameterized CAD Geometry
  - CFD-based speed line computation
  - Structural simulation (FEA)
- Automated workflow
- Compatible parameter spaces

### 1. Introduction

### 2. Computational Model

3. Nested Design of Experiment

4. Surrogate Modeling

5. Applications

### **Machine Design Model**

- Inputs:
  - Ambient conditions
  - Outflow pressure
  - Ambient volume flow
  - Axial impeller extent ratio
  - Impeller exit relative blade angle
  - Circumferential blade extent
  - Number of blades
  - ...

### • Outputs:

- All principal dimensions
  - Diameters
  - Blade angles
  - Thermodynamic properties
  - Chord Reynolds number
  - ...

### **Geometry Design**

- Based on non-dimensional parameters (Angles / ratio to D<sub>2</sub>)
- Including parameterized impeller disc
- Reduced parameter set controls multiple design parameters by global parameters



### **Geometry Design**

- Based on non-dimensional parameters (Angles / ratio to D<sub>2</sub>)
- Including parameterized impeller disc
- Reduced parameter set controls multiple design parameters by global parameters



### **Geometry Design**

- Reduced parameter set controls multiple design parameters by global parameters
- Allows for significant reduction of sample size with neglectable reduction of result parameter range



### **CFD Model**

- CFX Turbomachinery Setup
- Exit-corrected mass flow rate
- Convergence evaluation using CoV
- Averaging approach for unsteady results



### **Speed Line Computation**

- Fully automated speed line computation tool <sup>1)</sup>
- Choke point defined at quasiconstant mass flow rate
- Surge at maximum of static outflow pressure
- Direct Peak-Efficiency point identification



<sup>1)</sup> "Physics-Based Surge Point Identification for Unsupervised CFD-Computation of Centrifugal Compressor Speed Lines" in Energy Conversion and Management: X, Yannick Lattner, Marius Geller and Michael Kutz, DOI: <u>10.1016/j.ecmx.2022.100337</u>

#### **Neural network-based speed Line interpolation**



iSimT-24





### **FEA Model**

- Load due to rotational velocity
- No thermal or dynamic effects
- Evaluation of:
  - Maximum deformation and von-Mises stress
  - Leading and trailing edge deformations
  - Elastic strain energy (density) for multiple partitions



### Hybrid Surrogate modeling

- Flexible and universal approach to surrogate modeling using multiple component surrogate models (CSMs)
- Each component surrogate model is individually trained
- Hybrid surrogate model is composed by all by optimizing individual weights
- In this approach, combination of:
  - Polynomial regression
  - Neural networks
  - Kriging

### Hybrid Surrogate modeling

- Scanning-test-set cross validation
- Measure for surrogate modeling
  - WR2: Weighted coefficient of determination:

$$WR2 = 1 - \frac{SSE_{\text{Test}} + \alpha SSE_{\text{Training}}}{SST_{\text{Test}} + \alpha SST_{\text{Training}}}$$

### 1. Introduction

2. Computational Model

3. Nested Design of Experiments

4. Surrogate Modeling

5. Applications

- Separation of machine design space and geometry design space
- First level: machine design of experiments
- Second level: geometry designs of experiments for each machine design



### Machine design of experiments

### • 50 Machine designs using LHS design

| Parameter                   | $\mathbf{Symbol}$             | <b>DOE</b> Properties                                      |
|-----------------------------|-------------------------------|------------------------------------------------------------|
| Sampled propertie           | es                            | Range                                                      |
| Cordier line position       | $s_{ m Cordier}$              | 0 to 1                                                     |
| Outflow pressure            | $p_{ m out}$                  | $2 \times 10^5 \mathrm{Pa}$ to $4 \times 10^5 \mathrm{Pa}$ |
| Ambient volume flow rate    | $\dot{V}_{ m amb}$            | $0.5{ m m}^3{ m s}^{-1}$ to $4{ m m}^3{ m s}^{-1}$         |
| Axial impeller extent ratio | $ u_L$                        | 0.2 to 0.4                                                 |
| Trailing edge blade angle   | $eta_2$                       | $40^{\circ}$ to $75^{\circ}$                               |
| ircumferential blade extent | $	heta_2$                     | $35^{\circ}$ to $55^{\circ}$                               |
| Constant properti           | ies                           | Value                                                      |
| Ambient pressure            | $p_{ m amb}$                  | $1 \times 10^5 \mathrm{Pa}$                                |
| Ambient temperature         | $T_{ m amb}$                  | $288.15\mathrm{K}$                                         |
| Iub to shaft diameter ratio | $D_{1_{ m hub}}/D_{ m shaft}$ | 1.25                                                       |
| Blade thickness ratio       | $ u_s$                        | 0.01                                                       |
| Number of blades            | $\boldsymbol{z}$              | 13                                                         |



### **Geometry design of experiments**

• 50 geometry designs using LHS design for each machine design point

| Parameter                                     | $\mathbf{Symbol}$ | DOE Properties                |
|-----------------------------------------------|-------------------|-------------------------------|
| Sampled properties                            |                   | Range                         |
| Hub control points in meridional direction    | Hub_Mer           | -1 to $1$                     |
| Hub control points in spanwise direction      | Hub_Span          | 0 to 1                        |
| Shroud control points in meridional direction | Shroud_Mer        | -1 to $1$                     |
| Shroud control points in spanwise direction   | Shroud_Span       | 0 to 1                        |
| Leading edge hub position                     | LE_Hub_Pos        | 0.05 to 0.15                  |
| Leading edge offset angle hub to shroud       | LE_Shroud_Offset  | $0^{\circ}$ to $10^{\circ}$   |
| Blade twist (Leading Edge)                    | Twist             | $-10^{\circ}$ to $10^{\circ}$ |
| Blade rake (Trailing Edge)                    | Rake              | $-25^\circ$ to $25^\circ$     |
| Intensity of blade's $S$ -shape $(hub)$       | Theta_Hub_S       | 0 to $1$                      |
| Intensity of blade's S-shape (shroud)         | Theta_Shroud_S    | 0 to 1                        |

### Solving

- CFD
  - 2481 / 2500 successfully computed speed lines
  - More than 19 TB of data
  - More than 35.000 CFD simulations
  - Computational time around 6 months
- FEA
  - All 2500 designs were successfully computed
  - 2.7 TB data

#### **Initial result evaluation**



#### **Initial result evaluation**



- 1. Introduction
- 2. Computational Model
- 3. Nested Design of Experiment
- 4. Surrogate Modeling
- 5. Applications

### **Speed line interpolation**

- Modeled as function of exitcorrected mass flow rate:
  - Mass flow rate
  - Total-to-static pressure ratio 🚆
  - Polytropic efficiency
- Additionally, spline fitting was conducted



### **Speed line interpolation**

- Modeled as function of exitcorrected mass flow rate:
  - Mass flow rate
  - Total-to-static pressure ratio
  - Polytropic efficiency
- Additionally, spline fitting was conducted



### **Geometry design of experiments**

- Inputs: Geometry design parameters
- Outputs:

| Parameter                                                                  | Symbol                                   | Unit             |
|----------------------------------------------------------------------------|------------------------------------------|------------------|
| Speed line parameters                                                      |                                          |                  |
| Peak efficiency                                                            | $\eta_{ m pol_{max}}$                    | _                |
| Peak efficiency mass flow rate                                             | $\dot{m}_{\eta-\mathrm{max}}$            | ${\rm kgs^{-1}}$ |
| Peak efficiency total-to-static pressure ratio                             | $\Pi_{\mathrm{t-s}_{\eta-\mathrm{max}}}$ | _                |
| Choke efficiency                                                           | $\eta_{ m pol_{choke}}$                  | _                |
| Choke mass flow rate                                                       | $\dot{m}_{ m choke}$                     | ${\rm kgs^{-1}}$ |
| Choke total-to-static pressure ratio                                       | $\Pi_{\rm t-s_{\rm choke}}$              | _                |
| Surge efficiency                                                           | $\eta_{ m pol_{surge}}$                  | _                |
| Surge mass flow rate                                                       | $\dot{m}_{ m surge}$                     | ${\rm kgs^{-1}}$ |
| Surge total-to-static pressure ratio                                       | $\Pi_{t-s_{\rm surge}}$                  | _                |
| Normalized speed line width                                                | $\Delta \dot{m}_{ m norm}$               | _                |
| Total-to-static pressure ratio spline parameter ( $\dot{m}$ -coordinate)   | $\chi_{\mathtt{TSPR}_{\dot{m}}}$         | _                |
| Total-to-static pressure ratio spline parameter ( $\Pi_{t-s}$ -coordinate) | $\chi_{\mathtt{TSPR}_{TS^{'}PR}}$        | _                |
| Polytropic efficiency spline parameter ( $\dot{m}$ -coordinate)            | $\chi_{{\tt Eff}_{\dot{m}}}$             | _                |
| Polytropic efficiency spline parameter ( $\eta_{\rm pol}$ -coordinate)     | $\chi_{{\tt Eff}_{\dot\eta}}$            | _                |

| Structural load parameters                                            |                         |                     |
|-----------------------------------------------------------------------|-------------------------|---------------------|
| Maximum value of the von Mises stress                                 |                         | Pa                  |
| Maximum value of the deformation                                      |                         | m                   |
| Directional deformation of the leading edge at the shroud, collinear  |                         | m                   |
| Directional deformation of the trailing edge at the shroud, collinear |                         | m                   |
| Elastic strain energy of the full impeller model                      | $U_{\mathrm{impeller}}$ | J                   |
| Elastic strain energy of the blade region                             | $U_{\mathrm{blade}}$    | J                   |
| Elastic strain energy of the disc region                              |                         | J                   |
| Elastic strain density of the full impeller model                     |                         | ${ m J}{ m m}^{-3}$ |
| Elastic strain density of the blade region                            | $u_{ m blade}$          | ${ m J}{ m m}^{-3}$ |
| Elastic strain density of the disc region                             | $u_{ m disc}$           | ${ m J}{ m m}^{-3}$ |
| Volume of the full impeller model                                     | $V_{\mathrm{impeller}}$ | $\mathrm{m}^3$      |
| Volume of the blade region                                            | $V_{ m blade}$          | $\mathrm{m}^3$      |
| Volume of the disc region                                             | $V_{ m disc}$           | $\mathrm{m}^3$      |

### **Geometry design of experiments**

- Hybrid surrogate model is trained 50 times (each machine design point) for each output parameter = 1350 surrogate models
- Mean WR2 = 0.9483

### Machine design point-wide optimization

- Optimization of geometry design parameters for each machine design point:
  - Achievable efficiency and achievable speed line width





### **Machine design of experiments**

Inputs:

Sampled:

- Ambient volume flow rate
- Total-to-static pressure ratio
- Axial impeller extent ratio
- Circumferential blade extent
- Impeller exit relative blade angle Derived:
- Specific diameter
- Specific speed
- Flow coefficient
- Polytropic work coefficient
- Chord Reynolds number

- Outputs:
  - Achievable Efficiency
  - Achievable Speed Line Width
  - Associated speed line parameters
  - Associated geometry parameters
  - Machine design point-wide structural result parameters
- WR2 for main parameters > 0.99

### 1. Introduction

2. Computational Model

3. Nested Design of Experiment

4. Surrogate Modeling

5. Applications

## RESULTS

### **Duty-specific Cordier lines**



## RESULTS

#### Direct optimization, initial guess for impeller geometry



iSimT-24

## RESULTS

#### **Efficiency correlations**





### Modelling of Multi-Parameter-Level Simulation Data to Create an Enhanced Cordier Diagram for Radial Turbocompressors

# THANK YOU

iSimT-24 Symposium on Innovative Simulations in Turbomachinery Yannick Lattner, M.Eng

Team Lead CFD at ITB Ingenieurgesellschaft für technische Berechnungen